Eigenvalue estimates for 3-Sasaki structures

نویسندگان

چکیده

Abstract We obtain new lower bounds for the first non-zero eigenvalue of scalar sub-Laplacian 3-Sasaki metrics, improving Lichnerowicz–Obata-type estimates by Ivanov, Petkov and Vassilev (2013, 2014). The limiting eigenspace is fully described in terms automorphism algebra. Our results can be thought as an analogue Lichnerowicz–Matsushima estimate Kähler–Einstein metrics. In dimension 7, if algebra non-vanishing, we also compute second construct explicit eigenfunctions. addition, all metrics canonical variation metric give a bound spectrum Riemannian Laplace operator, depending only on curvature dimension. strengthen result pertaining to growth rate harmonic functions, due Conlon, Hein Sun 2017), case hyperkähler cones. this setup describe space holomorphic functions.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eigenvalue Estimates for Random Schrödinger Operators

where γ ≥ 0 for d ≥ 3, γ > 0 for d = 2 and γ ≥ 1/2 for d = 1. The estimate (1.1) is called the classical Lieb-Thirring inequality. One needs to remark, that although for any V ∈ L the eigenvalue sum ∑ j |λj| converges for both V and −V , it follows from our results that converse need not be true. The sum ∑ j |λj| can converge even for potentials that are not functions of the class L . In the pr...

متن کامل

Eigenvalue Estimates for the Perturbed Andersson Model

Consider the operator H = −∆ + pω − V, where pω is the potential of the Andersson type and V ≥ 0 is a function that decays slowly at the infinity. We study the rate of accumulation of eigenvalues of H to the bottom of the essential spectrum. 1. STATEMENT OF THE MAIN RESULT The question we study is rooted in two different areas of mathematics: the spectral theory of differential operators and th...

متن کامل

Eigenvalue Estimates for Preconditioned Saddle Point Matrices

New eigenvalue bounds for symmetric matrices of saddle point form are derived and applied for preconditioned versions of the matrices. The preconditioners enable efficient iterative solution of the corresponding linear systems with, for some important applications, an optimal order of computational complexity.

متن کامل

Dirac eigenvalue estimates on surfaces

We prove lower Dirac eigenvalue bounds for closed surfaces with a spin structure whose Arf invariant equals 1. Besides the area only one geometric quantity enters in these estimates, the spin-cut-diameter δ(M) which depends on the choice of spin structure. It can be expressed in terms of various distances on the surfaces or, alternatively, by stable norms of certain cohomology classes. In case ...

متن کامل

Adaptive eigenvalue computation: complexity estimates

This paper is concerned with the design and analysis of a fully adaptive eigenvalue solver for linear symmetric operators. After transforming the original problem into an equivalent one formulated on `2, the space of square summable sequences, the problem becomes sufficiently well conditioned so that a gradient type iteration can be shown to reduce the error by some fixed factor per step. It th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Crelle's Journal

سال: 2023

ISSN: ['1435-5345', '0075-4102']

DOI: https://doi.org/10.1515/crelle-2023-0044